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Three-dimensional numerical integrations capable of resolving the energy containing 
motions at large Reynolds number have tested the nonlinear eddy-viscosity formulation 
in the two cases when the turbulence is generated by mean shear or by thermal instability. 
The proportionality constant suggested by Lilly is found to be applicable in the latter 
case, but a smaller value is found necessary in the presence of mean shear. Spectra of 
calculated velocity components are shown to deviate from a ,&6/a law, as A approaches 
the grid cutoff waventnnber, in a manner consistent with the application of Reynolds- 
averaging over grid volumes. 

1. INTRODUCTION 

With the aid of Reynolds-averaging over finite-difference grid volumes, it is 
possible with the latest computers to simulate turbulent motions on a grid in 
three dimensions [l-3] and thereby gain useful information. Eulerian properties 
of the calculated flow reported in Refs. [l , 21 which closely resemble real turbulence 
include the irregular everchanging motions, magnitudes and distributions of 
the turbulence intensities, vertical transport of momentum, velocity autocorrela- 
tions and correlation coefficients, and the net stretching of vortex lines. The 
dispersive nature of the calculated velocities is reported in Ref. [3], along with 
evaluation of Lagrangian autocorrelation coefficients. 

The local Reynolds stresses which arise from the averaging process have so far 
been simulated by about the crudest of methods: That involving an eddy coefficient 
with magnitude limited in some way by the size of the averaging domain. When 
this domain is considered to be the grid volume of a detailed numerical integration, 
the eddy coefficient K becomes a “subgrid scale” or “SGS” eddy coefficient. 

For simulation of three-dimensional turbulence, Lilly [4] has shown that the 
formulation of Smagorinsky [5] for K is consistent with the existence of a three- 
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dimensional inertial subrange on scales comparable to and less than the grid 
interval. The formulation, which allows K to be variable in space and time, is 

K = (~4)~ D/2/2, (1) 

where d is a representative grid interval, D is the magnitude of the local velocity 
deformation calculated on the finite-difference grid, and c is the dimensionless 
constant which forms the main topic of this paper. More specifically, D is given by 

D = [($$ + ?%)(s + $!%)]1’2, (2) 

where summation is implied over i, j = 1,2, 3; the overbar is the Reynolds 
average over the grid volume (the average is taken to be continuous over space), 
i& is a calculated velocity component at a grid point, and 6 denotes the simplest 
centered finite difference across the interval (0~)~ . (See the Appendix for the 
finite-difference form of the velocity gradient and of K for the space-staggered 
velocity grid.) The SGS Reynolds stresses are assumed given by 

a - !. &iul’ul’ = -K sii. ---!- 6uj 
3 AXj + Axi 1 ’ (3) 

where 6ij is the Kronecker delta, and the primes denote the deviation at any 
point from the Reynolds-averaged value centered at the same point. 

2. THEORETICAL ESTIMATES OF c 

Although (1) is more applicable to three-dimensional turbulence than to two- 
dimensional flows, Smagorinsky [5] used formulation (1) for numerical calculations 
of the large-scale global atmospheric circulation with the value c = 0.4 = k, 
the Karman constant. This value can be arrived at by setting K and D in (1) to 
their respective values within a “constant-stress” boundary layer, 

kw, = (~4~ u&z,), 

where u* is the friction velocity at the surface and z1 is the level of application 
within the “constant-stress” layer. Upon solving for c, we find 

c= -3 

( 1 A k’ (4) 

If the level at which K is desired equals A and indeed lies within the “law-of- 
the-wall” region, and if at this level almost all the calculated velocity deformation 
is associated with the large-scale mean shear, then (4) is appropriate with c = k. 
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However, one or both of these assumptions is usually grossly violated except, 
perhaps, at the lowest level of grid points. Thus, (4) has no particular relevance 
above this level in a numerical calculation. 

Lilly [4] has estimated c with approximate knowledge of the Kolmogorov 
inertial-subrange constant 01. He assumed that isotropic turbulence with such an 
inertial subrange was present in the problem being simulated numerically on 
scales both much greater and much less than the grid interval d. He also assumed 
dx = dy = AZ = A, and took the Reynolds averaging volume to be A3. He 
found that 

c N 0 23~r-~/~. - . 

For 01 = 1.41, an average value from the measurements of Pond et al. [6] for 
the three-dimensional energy-spectrum constant, it follows that c = 0.176. 
However, this value did not take into account that D in (1) is obtained as a finite 
difference. When this fact was taken into account, with velocity differences taken 
across single grid intervals, Lilly [7] found a 25 % increase, giving c = 0.22. 
A more recent, revised value of c by Lilly (unpublished) using 01 = 1.50 is 

c = 0.20. (5) 

Of course, this value of c could not be recommended for numerical integrations 
in which the finite-difference techniques contain significant numerical instabilities 
or built-in smoothing. An example where it would not apply is the Lax-We&off 
method [8] in which intrinsic damping occurs even in the absence of any viscous 
terms. Another example is the “MAC” method [9] where forward time steps are 
used with respect to the advective terms. That method is absolutely unstable 
(Thompson [lo, p. 681, Hirt [l 11) unless the viscosity is sufficiently large. Some 
examples which are suitable, however, having essentially neutral numerical 
stability, include the methods recommended by Lilly [12] and Williams [13]. 
In both these methods, and independently in [9], the approach of Arakawa [14] 
is used for the finite-differencing of the nonlinear advective terms. Nonlinear 
instability is thereby avoided. Time differencing is by means of the Adams- 
Bashforth (see Ref. [12]) or central differencing “leapfrog” technique (see Fischer, 
Ref. [15]). 

3. THREE-DIMENSIONAL NUMERICAL ESTIMATES OF c 

The essential techniques recommended by Williams [13] were used inde- 
pendently by Deardorff [l] in a study of turbulent channel flow (plane Poiseuille 
flow) at large Reynolds number. Here it was found that the use of c = 0.17, 
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which is even smaller than the theoretical value in (5), led to K values sufficiently 
large to damp the eddies out unless the mean shear became and remained exces- 
sively large. Instead, the value 

c = 0.10 (6) 

was found to be the best single value applying throughout the flow, using the 
measurements of Laufer [16] as a standard for comparison. In the computations, 
a total of 24 x 14 x 20 grid intervals were used in the respective downstream (x), 
cross-stream (y), and normal or vertical (2) directions. The grid points closest 
to the wall lay well outside of the laminar sublayer but within an assumed “law-of- 
the-wall” region. The dimensionless grid intervals, scaled by the full channel 
height, were dx = 0.125, dy = 0.05 = dz. In (I), d was taken to be 

A = (Ax . Ay . A2)‘/3. (7) 

The same methods were also used on a different problem-the turbulent flow 
within a neutral planetary (rotating) boundary layer 121. The same grid network 
and dimensionless grid intervals were used, scaled, however, with the approximate 
height of the planetary boundary layer, with the exception that Ay was increased 
to 0.071. Again the value c = 0.10 gave reasonable results although in this problem 
a mean shear exists in not just one but two velocity components. 

In more recent numerical integrations not yet reported, the number of grid 
intervals was nearly doubled: 40 x 20 x 20, and the dimensionless grid intervals 
set at Ax = Ay = 0.10, AZ = 0.05. Numerical techniques were the same as in 
Refs. [l-3] except that the pressure was obtained exactly from a fast Fourier- 
transform inversion, rather than approximately from overrelaxation. Also, 
temperature was included as an additional but passive variable, located at the 
same grid points as pressure. This time, examination of one-dimensional spectra 
disclosed some piling up of energy on the 2Ax scale. By increasing c from 0.10 to 
0.13 this was eliminated, although at the lowest interior grid points within the 
“constant-stress” layer the value of c was maintained at about 0.10. At this level 
(zl = 6212 for a “staggered” velocity grid) no piling up of energy had occurred, 
and although (4) and (7) gave c = 0.13, this value was an appreciable overestimate, 
Even at this small height a significant fraction (about 50%) of the velocity 
deformation D was associated with fluctuating local gradients. The value c = 0.10 
at this level was therefore more correct. It is probable that had c = 0.13 been 
used in the interior and c = 0. IO near the boundaries in the channel-flow problem, 
results would have been as favorable as using c = 0.10 throughout. However, 
the discrepancy between c = 0.13 and Lilly’s value c = 0.20 was still perplexingly 
large. 

Additional integrations with the grid network of greater resolution were made 
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for the case of an unstably stratified planetary boundary layer in which the 
temperature was an active, rather than passive, variable. The degree of thermal 
instability was relatively small, with -H/L = 4.5, where H is the height of the 
convecting region and L the Monin-Obukhov length. However, the vertical 
mixing was much more pronounced, and very little mean shear remained in the 
interior, after a statistically steady state was achieved, in comparison with the 
amounts in the neutral planetary boundary layer. It was found that excess energy 
accumulated near the 2dx and 2dy scales until c had been increased to about 0.21. 
(Spurious energy which piled up when using a c value too small had to be removed 
by selective filtering before continuing the integration.) With this value of c, 
the energy cascading towards higher wavenumbers was removed (transferred to 
the subgrid scale) at the proper rate that a reasonable energy spectrum existed 
at higher wavenumbers (see Section 4), and no further filtering was necessary. 
At the grid points nearest the lower boundary, c was again maintained somewhat 
smaller than the value prescribed by (4). The difference between the value of c 
used in the interior, 0.21, and that derived by Lilly, -0.20, for isotropic turbulence, 
is well within the limits of uncertainty of either method of estimating its proper 
value. 

It is therefore being suggested here that this near coincidence of c values is 
not accidental, and that turbulence generated by a shear flow is a rather special 
case requiring a smaller magnitude for c. 

Average vertical distributions of K for the four cases discussed are shown in 
Fig. 1: Channel flow and the neutral planetary boundary layer (PBL) both having 
c = 0.10 throughout; the neutral and weakly unstable PBL with improved resolu- 
tion having larger values of c outside of the “constant-stress” region. The channel- 
flow K distribution is symmetric about z/H = 0.5. In the PBL distributions K 
decreases monotonically with height except in the unstable PBL where a slight 
increase near the top is associated with impinging thermal plumes and enhanced 
values of / &V/& I. At z = H the condition W = 0 was specified in all cases, 
which is unduly restrictive in its simulation of a penetrable inversion base. 

In the two cases where c = 0.10 throughout (dashed curves of Fig. 1) the 
distribution is nearly discontinuous in passing away from the wall region. In the 
other two cases with c larger outside of the “constant-stress” region, the profiles 
seem more continuous and perhaps more correct. In the case of the weakly unstable 
PBL, K in the “constant-stress” layer was specified to be about 1.3 times its 
neutral value. A somewhat larger factor of enhancement of 1.5 can be obtained 
from the diabatic profile theory of Businger and Dyer [17] with the knowledge 
that z1 = 4z/2 = H/40. 

These SGS K values should not be confused with the more usual “total” eddy 
coefficients which arise from large-scale horizontal averaging or from ensemble 
averaging. The “total” eddy coefficient .KZZ, for example, can be split into the 
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FIG. 1. Vertical distribution of average subgrid-scale K values for four cases indicated. K is 
made dimensionless by the product of H, the total height, and u* , the surface friction velocity. 

part associated with the calculated, resolvable turbulence, and the part associated 
with the unresolvable SGS motions as follows: 

y- _ -9’ -(UW> 2z--=------ 
wm a(iiyaz --g&gg+ (K), 

where the angular brackets represent an ensemble or horizontal average of large 
scale. The directly calculated portion of the total eddy coefficient may become up 
to an order of magnitude larger than the SGS eddy coefficient (K) [2], and 
for the unstable PBL can even be negative. 

It is interesting to note that (1) appears to apply for the case of thermal convec- 
tion without any modification, i.e., without any added factor of enhancement 
containing lapse rate or heat flux. Instead, enhancement of K occurs automatically 
when local velocity gradients of small scale are enhanced, as could be caused by 
thermal convection. That formulation (1) should be applicable for unstable 
stratification is consistent with the fact that a .&5/3 inertial subrange has frequently 
been reported [18, 191 for this case. The stability of c was tested in further numerical 
integrations for a more vigorously unstable PBL with -H/L = 45. Although 
dimensionless velocities were of considerably larger magnitude than for the case 
-H/L = 4.5, the same value c = 0.21 was found to yield very reasonable results 
judging from spectra at the larger wavenumbers as well as from the appearance 
of the energy bearing motions. 
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Local enhancement of calculated K values may be seen in a cross-sectional 
view in Fig. 2 of one of 40 y-z planes in the slightly unstable PBL with -H/L = 4.5. 
Here the fluctuations in velocity, potential temperature, and pressure are also 
shown at the same time. Velocity components are made dimensionless by U* , 
pressure by pact, and 0 represents the surface-to-air potential temperature 
difIerence made dimensionless by the surface kinematic heat flux divided by U* . 
Except for K values, the horizontal means have been removed. Note that 0 is 
negative in warm air and positive in cool air, and that K is generally greater in 
ascending warm currents or near their edges than elsewhere at the same height. 

FIG. 2. Contours of velocity components, pressure, dimensionless surface-minus-air potential 
temperature 8, and subgrid-scale eddy coefficient K in a y-z plane at a particular time in the 
statistically steady state of an unstable planetary boundary layer (---H/L = 4.5). Ekcept for K, 
horizontally averaged mean values have been removed from these fields to reveal only the fluctua- 
tions. Contour interval for ti/u* and S/u* is 1.0, for G/u* is 0.75, for 8 is 0.30, for $/@u*~) is 1.50, 
and for K/(Hu,) is 0.003. Regions of small K are labeled S and regions of relatively big K are 
labeled B. In the other variables, positive or zero contours are solid, negative ones dotted. 
Dotted contours of 8, however, refer to relatively warm air and solid contours of & to cool air. 

The implication is that the SGS eddies are more intense within these regions, 
this having been accomplished in nature partly by the upward advection of small 
scale turbulence from lower levels where its intensity is largest. In the numerical 
model this appears to have been accomplished partly by upward advection of 
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local velocity deformation D, upon which K depends, which is generally largest 
near the lower boundary. 

In the case of stable stratification, (1) cannot be expected to hold. Then the 
spectrum is apt to possess a buoyant-subrange slope steeper than -513, and the 
value of c in (5) is probably incorrect. Furthermore, the turbulence may then 
exist only in patches. No relevant three-dimensional numerical integrations to 
test the stable case are known to exist. 

4. SPECTRA OF (REYNOLDS-AVERAGED) VELOCITIES AND TEMPERATURE 

Some one-dimensional spectra calculated from the results of the numerical 
model of the planetary boundary layer with greater instability (-H/L = 45) 
are shown in Fig. 3. For this particular integration, the number of grid intervals 

FIG. 3. One-dimensional horizontal spectra of calculated velocity components and of potentia 
temperature at the level z/H = 0.475 within an unstable planetary boundary layer (---H/L = 45). 
Wave n = 1 corresponds to the largest possible horizontal wavelength and wave n = 20 corre- 
sponds to the 2Ax or 2Ay wave. 
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was doubled in they direction, giving 40 x 40 x 20 grid points within the volume 
4H x 4H x H. The nondimensional spectra are averages along horizontal lines 
at a level about halfway between the surface and the top of the convecting region. 
The spectra are also averages in time over 10 realizations separated by time 
intervals of O.O7H/u, . Wavelengths extend from 0.2H to 4H, where the height H 
of the convecting region could be considered to be of order 1 km. The plotted 
spectral intensities, E(n)/u*” and e2(n), are related to the more familiar E(R) and 
02(k) by 

E(n) 4 W) --c= - l u*2 and 
u* 

62(n) = )&1@(~), 

where R = 2m/LI and lI = A at n = 1. L’ is the length or width of the region 
between cyclic lateral boundaries. The total variance not associated with a constant 
value along a line is simply the summation over n of the E(n) or @“(a) values on 
the curves. 

The spectral slopes are generally steeper than -5/3 over the upper half of 
wavenumbers, becoming steepest at the grid-cutoff wavenumber A = r/Ax or 
n/dy, corresponding to yt = 20. This shape is expected when it is realized that it is 
the unaveraged velocity component which is assumed to have a P513 spectrum 
in the vicinity of the cutoff wavenumbers. The Reynolds-averaged velocity 
components and temperature which are predicted numerically should therefore 
contain less intensity, especially towards higher wavenumbers, than do the 
unaveraged variables. Their spectra near the cutoff wavenumbers therefore 
resemble spectra within a dissipation subrange. Another way of stating this is 
that the eddy viscosity has taken the place of the molecular viscosity, with the 
effective dissipation range being shifted far to the left on a spectral plot. With 
this interpretation, the relevant Reynolds number of the problem is the eddy 
Reynolds number R’ = u,H/K, which had values ranging from about 100 to 1000 
in the cases considered. Since K >>> v, where v is the kinematic viscosity, it 
follows that R’ < < < R, where R is the actual Reynolds number. 

An estimate of the one-dimensional spectrum of an inertial-subrange variable 
which has been Reynolds-averaged over grid volumes is provided by multiplying 
the k-5/3 spectrum by the square of the attentuation factor arising from Reynolds 
averaging over dx (or dy) alone. This factor is sin@lx/2)/(&lx/2), (see 
Ref. [20, p. 121). Both the -5/3 and the filtered -5/3 spectra are indicated in Fig. 3. 
The slope of the latter curve at the cutoff wavenumber is -11/3. 

The fact that the calculated spectra of Fig. 3 follow a filtered R5j3 curve very 
closely for n > 4 indicates that the unaveraged spectra of the PBL being modeled 
would be expected to follow the d-&j3 law in this range. Whether or not this range 
of wavenumbers should be called an “inertial subrange” is debatable, for energy 
is undoubtedly being fed into the turbulence at all wavenumbers shown. Hence, 
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the rate of cascade of energy down the spectrum must be considerably greater 
at n = 20 than at IZ = 4. Also, due to the anisotropy in the turbulence energy at 
heights near z/H = 0.45, where the energy of the vertical velocity fluctuations 
was twice that of either horizontal component, the spectral intensity of Z and 
its rate of cascade of energy towards higher wavenumbers is seen to be about 
twice that for U along y or V along x for n > 4. (The latter two spectra were identical 
except for sampling errors, and were averaged together, as was the spectrum of 
U along x with V along J, W along x with W along y, and @ along x with 6 along JJ.) 
It is also significantly larger than 4/3 times that of U along x or i; along y, this 
factor of enhancement being expected only if isotropy existed. 

Measurements also seem to show the existence of &-5/3 spectra under similar 
conditions of anisotropy within the unstable PBL [19,21]. As yet, no convincing 
explanation for this “apparent” inertial subrange is available, nor is it known 
whether it merges into a true inertial subrange at some large wavenumber or 
whether anisotropy persists into the molecular-dissipation subrange. 

A small but systematic deviation of the spectra from the filtered -5/3 curves 
may be noted at the largest three wavenumbers. Wavenumber 18 seems to contain 
about 20 ‘A too much energy, wavenumber 19 about 30 % too much, and wave- 
number 20 about 20 % too little. This may be some sort of aliasing error. Or, 
if the spectral estimate for wavenumber 20 were to be doubled to account for 
the fact that the 2dx harmonic contains only the cosine wave, it may indicate 
that a value of c slightly greater than 0.21 is appropriate. 

It may be noted that although the value of c z 0.20 in (5) was derived under 
the assumption of local isotropy, the use of the single value c = 0.21 for K values 
occurring in all three equations of motion did not prevent anisotropic /-s/3 spectral 
ranges from occurring. It might be thought that the greater cascade rate for the 
vertical component of energy than for either of the horizontal components would 
require a greater value of c in the vertical-component equation of motion. However, 
the extremely similar shapes of all three velocity spectra in Fig. 3 suggest that 
a single value of c for all three governing equations is entirely adequate. 

The spectrum for temperature, 6, became similar to the velocity spectra at 
high wavenumbers as in Fig. 3, only after its SGS eddy coefficient KT had been 
increased by a factor of three over K for momentum at grid points outside of 
the “constant-stress” layer. Here KT is defined by 

I ae ui’ 6 = -KT axi, 

where 9 is the potential temperature. This conclusion held for either the unstable 
case when 0 interacted with i? or the case when it was a passive scalar within a 
neutral PBL. Within the “constant-stress” region, however, the two eddy coeffi- 
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cients were equated, for the case of neutral thermal stability, to be consistent 
with micro-meteorological measurements [18, p. 1051. 

The relatively large factor of three for K,/K in the interior region where the 
energy containing eddies could be fairly well resolved is qualitatively consistent 
with the finding of Kraichnan [22] that the relative rate of cascade of scalar 
variance to higher wavenumbers is markedly greater than the rate for energy 
cascade in an inertial subrange. However, the accuracy of the empirically derived 
factor of three cannot yet be stated, it being known only that a factor of two, 
which had also been tested, was too small. 

Although it will probably be many years before digital computers have evolved 
to the point where spectra from three-dimensional numerical integrations can 
even begin to compete in range with measured spectra, examination of the 
numerical spectra is almost indispensible for checking if the magnitudes of K and c 
are consistent with the assumed size of the Reynolds averaging volume. 

5. CONCLUSIONS 

The formulation of Smagorinsky [5] for the SGS eddy coefficient, with Lilly’s 
approximate value for the relevant constant (c s 0.21) gives very reasonable 
results for three-dimensional numerical integrations in which thermal convection 
is the driving mechanism. If a large-scale velocity shear supplies the energy to 
the turbulence, then a significantly smaller value (c g 0.13) seems necessary. 
Although the reason for this is not yet known, it appears that the dominating 
presence of a large-scale mean shear has an inhibiting effect upon the inertial 
cascade rate for a given value of velocity deformation D. An extreme example 
which illustrates this effect is large-scale shear in the absence of turbulence. Then K 
should be essentially zero, requiring c to be essentially zero because D has a 
finite value due to the large-scale shear. 

A value of c somewhat smaller than that of the Karman-constant analogy, 
(4), was found appropriate at grid points within the “constant-stress” layer near 
a wall or boundary. 

The SGS eddy coefficient for a scalar such as temperature was found to be 
approximately three times larger than that for momentum outside of the unre- 
solvable region nearest the walls or boundary. 

Spectra near the cutoff wavenumber are rather sensitive indicators to the 
magnitude of K or c. It is suggested that c in formulation (1) is too small if the 
spectra do not behave as in a dissipation subrange as A approaches its cutoff value, 
with the slope becoming about -1 l/3 at the cutoff wavenumber in the case when 
a R513 inertial subrange exists in this region for the non-Reynolds-averaged 
variable. It would be desirable for a theoretical study to be undertaken to determine 
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more accurately the expected one-dimensional spectrum of a Reynolds-averaged 
inertial-subrange variable, for various averaging volumes lying within a three- 
dimensional inertial subrange. This would permit more accurate empirical deter- 
minations of c to accompany the desired size of the Reynolds-averaging volume. 

APPENDIX. FINITE-DIFFERENCE FORM OF K 

The space-staggered finite-difference velocity grid is shown in Fig. 4 in two 
dimensions, x and y, for simplicity. The method of extension to three dimensions 
is evident. Here p is the grid-volume averaged pressure, with overbars having 
been omitted. The eddy coefficients were positioned at the pressure grid points. 

U P IJ 

V V v-- 

T 
V V v A- 

U 
Y 

t 

P u 
I 

X I---- AX+ 

FIG. 4. Relative locations of pressure, p, and of velocity components, u and u, for the space- 
staggered velocity grid in an x-y plane. 

Let the central, circled pressure point be designated by ~(1, J), where x = Idx 
and y = Jdy. Then the portion of K associated with velocity gradients in the 
x-y plane was approximated in finite-difference form by 

KC& J> 
= (~d)~{2(u(Z + Q, J) - u(Z - 4, J))2/(4x)2 + 2(v(Z, J + +) - u(Z, J - ~))2/(Oy)z 

+ NW + 1, J + 41 - u(A J + iWx + @(Z + 4, J + 1) - @+ it, JWA” 
+ 4Ko(I, J + +) - 4Z- 1, J + #/h + @(I- $3 J + 1) - u(Z- 4, J))/412 
+ )[(u(Z, J - &) - u(Z - 1, J - &))/dx + (u(Z - $, J) - u(Z - 3, J - l))/d~]~ 

+ t[(v(Z + 1,J - iH - @,J - #/Lx + (u(Z + i,J) - u(Z + #,J - l)>/&l”>““. 
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For extension to the three dimensions actually utilized, the additional terms on 
the right to be included are the similar finite-difference counterparts of 2(&~/&)~, 
(a~/+ + &I/~z)~ and (aujaz + &/a~)~. 
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